Mechanical characteristics of high-velocity, low-amplitude spinal manipulations (HVLA-SMs) can vary. Sustained changes in peripheral neuronal signaling due to altered load transmission to a sensory receptor’s local mechanical environment are often considered a mechanism contributing to the therapeutic effects of spinal manipulation. The purpose of this study was to determine whether variation in an HVLA-SM’s thrust amplitude and duration alters the neural responsiveness of lumbar muscle spindles to either vertebral movement or position.


Anesthetized cats (n = 112) received L6 HVLA-SMs delivered to the spinous process. Cats were divided into 6 cohorts depending upon the peak thrust force (25%, 55%, 85% body weight) or thrust displacement (1, 2, 3 mm) they received. Cats in each cohort received 8 thrust durations (0-250 milliseconds). Afferent discharge from 112 spindles was recorded in response to ramp and hold vertebral movement before and after the manipulation. Changes in mean instantaneous frequency (∆MIF) during the baseline period preceding the ramps (∆MIFresting), during ramp movement (∆MIFmovement), and with the vertebra held in the new position (∆MIFposition) were compared.


Thrust duration had a small but statistically significant effect on ∆MIFresting at all 6 thrust amplitudes compared with control (0-millisecond thrust duration). The lowest amplitude thrust displacement (1 mm) increased ∆MIFresting at all thrust durations. For all the other thrust displacements and forces, the direction of change in ∆MIFresting was not consistent, and the pattern of change was not systematically related to thrust duration. Regardless of thrust force, displacement, or duration, ∆MIFmovement and ∆MIFposition were not significantly different from control.


Relatively low-amplitude thrust displacements applied during an HVLA-SM produced sustained increases in the resting discharge of paraspinal muscle spindles regardless of the duration over which the thrust was applied. However, regardless of the HVLA-SM’s thrust amplitude or duration, the responsiveness of paraspinal muscle spindles to vertebral movement and to a new vertebral position was not affected.

J Manipulative Physiol Ther. 2013 Feb;36(2):68-77. [PMID:23499141]

Author information: Cao DY, Reed WR, Long CR, Kawchuk GN, Pickar JG. Palmer Center for Chiropractic Research, Davenport, IA 52803, USA.

Free PMC Article

Previous Post Comparison of paraspinal cutaneous temperature measurements between subjects with and without chronic low back pain.
Next Post The Activator Advantage - April 2013